

GEOTECHNICAL ENGINEERING REPORT FOR CITY OF COLUMBIA

MORES LAKE DAM GLOBAL STABILITY ANALYSES COLUMBIA, MISSOURI

JULY 25, 2014

Crockett GTL Project Number: G13043

500 Big Bear Boulevard Columbia, Missouri 65202 (573) 447-3981

July 25, 2014

City of Columbia - Power Plant P.O. Box 6015 Columbia, MO 65205

Attn: Mr. Christian Johanningmeier, P.E.

Re: Geotechnical Engineering Report

Mores Lake Dam Global Stability Analyses

Columbia, Missouri

Crockett GTL Project Number: G13043

Dear Mr. Johanningmeier:

Crockett Geotechnical - Testing Lab (Crockett GTL) has completed the geotechnical engineering services for the referenced project. This report should be read in its entirety. Our services were performed in general accordance with our proposals dated November 20, 2013 and April 3, 2014. This report presents the results of our field explorations, laboratory testing, and findings regarding the stability of the dam slopes.

We appreciate the opportunity to work with you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Shane Steinman, E.I.

Stone Stain

Project Manager

Eric H. Lidholm, P.E. **Principal Engineer**

Missouri: E-23265

Enclosures

1 - Client (.PDF) CC:

1 - File

TABLE OF CONTENTS

1	INT	RODUCTION	•••
2	SIT	E AND PROJECT INFORMATION	•••
	2.1	Site Location	
	2.2	Project Description	••
3	SU	BSURFACE CONDITIONS	3
		Field Exploration and Laboratory Testing	
	3.2	Encountered Subsurface Conditions	3.
	3.3	Groundwater	.4
4	GL	OBAL STABILITY ANALYSES	5
5	GE	NERAL COMMENTS	.6

APPENDIX

Site Location Map

Boring Location Plan

Boring Logs

Boring Log Legend and Nomenclature

Global Stability Analyses Results

Geotechnical Engineering Report More Lake Dam Global Stability Analyses Columbia, Missouri Crockett GTL Project Number: G13043 July 25, 2014

1 INTRODUCTION

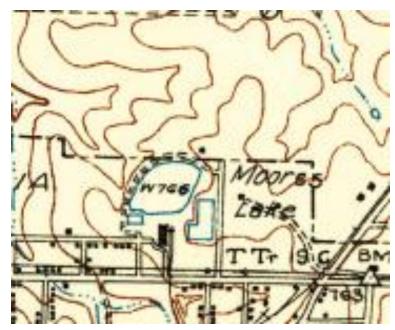
Crockett Geotechnical - Testing Lab (CGTL) has conducted a geotechnical exploration for Mores Lake Dam slope stability analyses. The purpose of our exploration was to:

- characterize and evaluate the subsurface conditions.
- perform global stability analyses for three sections of the dam

Our services were performed in general accordance with our proposals dated November 20, 2013 and April 3, 2014.

2 SITE AND PROJECT INFORMATION

2.1 SITE LOCATION


Description
This project is located approximately 600 feet north of the intersection of akeview Avenue and Edison Street in the City of Columbia, MO.
.atitude: 38.966587° .ongitude: -92.317311°
.al

2.2 PROJECT DESCRIPTION

A report entitled "Assessment of Dam Safety of Coal Combustion Surface Impoundments – Draft Report" dated October 2012 and revised in July 2013 was prepared by CDM Smith, Inc. In this draft report, in section 7.1.4 (page 7-2), it stated CDM Smith, Inc. could not review the adequacy of the factors of safety for a number of conditions. The conditions requiring analyses are presented in the following table.

USACE Recommended Minimum Factors of Safety									
USACE Recomme		or Sarery							
Analysis Candition	Required Minimum	Clone							
Analysis Condition	Factor of Safety	Slope							
End of Construction									
 Including staged construction 	1.3	Upstream and Downstream							
Long Term									
 steady state seepage, maximum storage 	1.5	Downstream							
pool, spillway crest or top of gates									
Maximum Surcharge Pool	1.4	Downstream							
Rapid Drawdown									
Maximum Surcharge Pool	1.1	Upstream							
Maximum Storage Pool	1.3	Upstream							
Seismic Conditions at Normal Pool Elev.	1.0								
Liquefaction	1.3	Not Applicable							

Crockett GTL was retained by the City of Columbia to perform these In order to determine analyses. areas of the dam that warranted analysis, Crockett GTL obtained and historical maps drawings regarding Mores Lake Dam. After reviewing these documents, it was determined three sections of the dam should be evaluated. The areas that were investigated were on the west side of the dam (borings B-1 and B-2), the northwestern side (borings, B-3, B-4, and B-7 through B-10) of the dam. These areas were chosen due to а historical

topographic map (1935 Columbia, MO quadrangle – see adjacent) indicated possible wetweather drainage swales could exist prior to the construction of the dam. The third area investigated (borings B-5 and B-6) was on the northern portion of the dam and was chosen as a typical "non-swale" location. A boring location diagram included in the Appendix of this report shows the specific boring locations.

3 SUBSURFACE CONDITIONS

3.1 FIELD EXPLORATION AND LABORATORY TESTING

Ten (10) borings were drilled for this project at the approximate locations indicated on the Boring Location Plan included in the Appendix of this report. The boring locations were designated by a CGTL geotechnical engineer. Approximate boring elevations were obtained from a topographic site plan prepared by Engineering Surveys and Services. The boring locations and elevations should be considered accurate only to the degree implied by the means and methods used to define them.

Borings were drilled with a truck mounted drill rig. Representative samples were obtained using thin-walled tube and split-barrel tube sampling procedures.

The samples were tagged for identification, sealed to reduce moisture loss, and taken to our laboratory for further examination, testing, and classification. Information provided on the boring logs attached to this report includes soil descriptions, consistency evaluations, boring depths, sampling intervals, and groundwater conditions. The borings were backfilled with auger cuttings prior to the drill crew leaving the site.

The field logs were prepared by the drill crew. Final logs included with this report represent the engineer's interpretation of the field logs and include modifications based upon laboratory tests and observation made of the samples. The descriptions of the soil on the final boring logs are in general accordance with the Unified Soil Classification System which is included in the Appendix of this report.

Detailed information regarding the material encountered and the results of field sampling and laboratory testing are shown on the Boring Logs included in the Appendix of this report.

3.2 ENCOUNTERED SUBSURFACE CONDITIONS

Surficial material consisted primarily of topsoil or gravel.

Below the surficial material, with the exception of borings B-9 and B-10, was fill. The fill was variable and consisted of sandy clay, lean to fat clay, fat clay, cobbles and boulders, and cinders. Boring B-8 terminated at 25 feet and appeared to still be encountering uncontrolled fill material.

Underlying the surficial material in borings B-9 and B-10, and the fill in the remaining borings was native soil that was visually identified as glacial drift. The glacial drift, as encountered in the borings, was comprised of a mixture of lean to fat clay, fat clay, clayey sand, some sandy zones.

None of the borings encountered bedrock however split spoon sampler refusal was achieved on apparent dense cobbles and possible boulders within the glacial drift in borings B-3, B-5, and B-9. Borings were extended to depths ranging from 19.6 feet to 60 feet.

Detailed descriptions of the encountered materials are listed on the individual boring logs included in the Appendix of this report. Strata lines indicate the approximate location of changes in material types. The transition between material types may be gradual.

3.3 GROUNDWATER

Groundwater was encountered in all of the borings. Borings B-1 through B-6 were converted into piezometers for long term groundwater analysis. Delayed groundwater readings are provided in the table, below. Borings B-7 through B-10 were backfilled immediately, for safety reasons, and no delayed groundwater readings were taken. Groundwater records are indicated on the boring logs included in the Appendix of this report.

Boring	Data Dailla d	Groundwater Depth, feet					
Number	Date Drilled	At time of Drilling	On 6-30-14				
B-1	1-2-14	16.0	8.8				
B-2	1-10-14	9.0	Note 1				
B-3	1-3-14	19.0	5.5				
B-4	1-9-14	8.0	4.2				
B-5	1-8-14	13.0	7.5				
B-6	1-9-14	13.5	3.3				
B-7	6-30-14	7.0	7.0				
B-8	6-30-14	5.0	5.0				
B- 9	6-30-14	7.0	7.0				
B-10	6-30-14	3.5	3.5				
1. Could not	obtain reading due to a City of Co	olumbia back-hoe being parked o	n top of piezometer cap.				

Groundwater levels depend on seasonal and climatic variations and may be present at different levels in the future. In addition, without extended periods of observation, accurate groundwater level measurements may not be possible, particularly in low permeability soils.

4 GLOBAL STABILITY ANALYSES

Global stability analyses were performed for three sections of the dam. These analyses were performed using STABL for Windows 3.0 slope stability program. This program utilizes simplified Bishop, Janbu, and Spencer methods of analyses. A search routine is used to evaluate a number of trial failure surfaces so the location of the critical failure surface (i.e. - the failure surface with the lowest factor of safety) can be estimated.

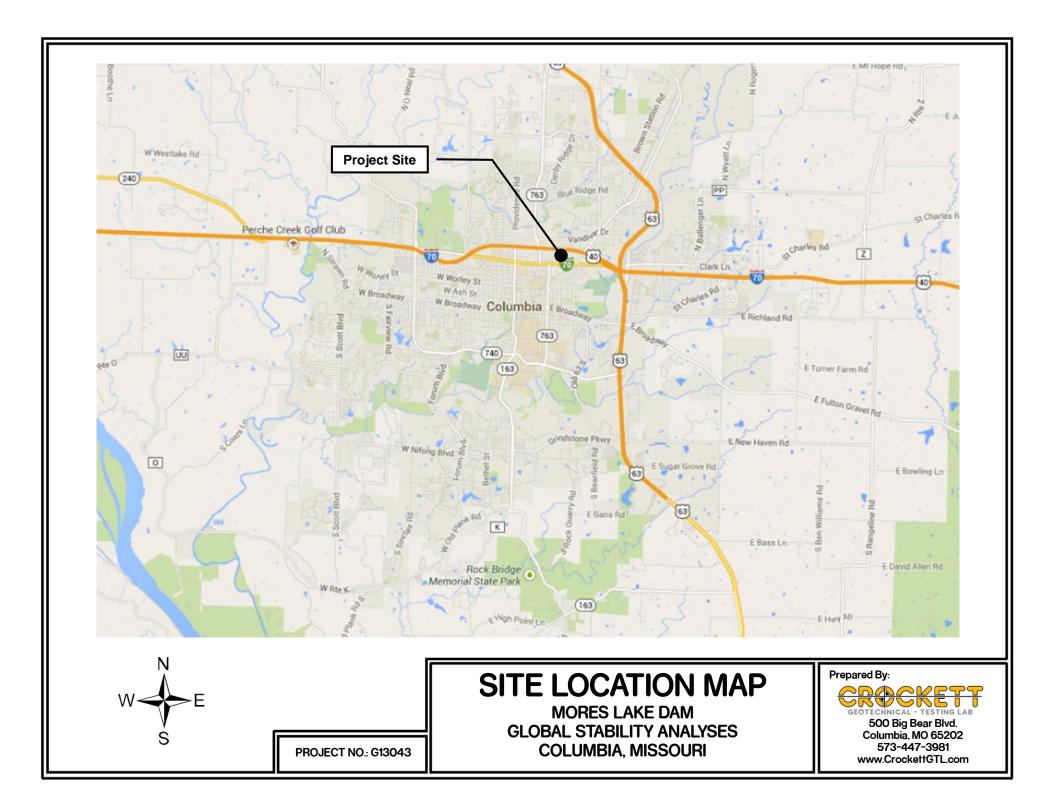
A topographic survey performed by Engineering Surveys and Services and the borings drilled for this geotechnical engineering investigation were used to develop a topographic and geologic cross sections for 3 separate areas of the dam. A summary of the analyses results are presented in the table below.

USACE Recommended Minimum Factors of Safety								
		Calculated Minimum Factor of Safety						
Analysis Condition	Required Minimum Factor of Safety	Section B-1/B-2	Section B-3/B-4 & B-7 - B-10	Section B-5/B-6				
End of Construction								
Including staged construction	1.3	2.3	1.0 ¹	2.3				
 Long Term steady state seepage, maximum storage pool, spillway crest or top of gates 	1.5	2.2	2.7	2.4				
Maximum Surcharge Pool	1.4	2.2	2.7	2.4				
Rapid Drawdown Maximum Surcharge Pool Maximum Storage Pool	1.1 1.3	2.3 2.3	2.3 2.3	1.8 1.8				
Seismic Conditions at Normal Pool Elev.	1.0	1.1	1.2	1.4				
Liquefaction ¹	1.3	N.L. ²	N.L. ²	N.L. ²				

Does not meet minimum required factor of safety if new construction.

All global stability analyses, with the exception of the end of construction analyses for the northwestern portion of the dam, exceeded the required minimum factors of safety. The soil encountered in the borings was also non-liquefiable resulting in satisfactory liquefaction analyses.

^{2.} N.L. = Not Liquefiable, PI > 12 or W_c / LL < 0.85 and/or N_{60} > 25


July 25, 2014
Geotechnical Engineering Report
Mores Lake Dam Global Stability Analyses – Columbia, Missouri
Crockett GTL Project Number: G13043

The end of construction analysis for the northwestern section of the dam resulted in a factor of safety slightly higher than 1.0. As this dam is not new construction, but rather over 100 year old construction, this factor of safety is of concern only if additional construction would be performed in this area of the dam. Should additional fill or new construction be required in this area, it is important to engage a geotechnical engineering consultant that can monitor pore water pressures and develop safe construction sequencing to manage and improve this area of the dam.

5 GENERAL COMMENTS

The analyses and recommendations provided herein are for the exclusive use of our client. Our analyses and recommendations are specific only to the project described herein and are not meant to supersede more stringent requirements of local ordinances or codes. The analyses and recommendations are based on subsurface information obtained at our boring locations, sample locations, our understanding of the project as described in this report, and geotechnical engineering practice consistent with the current standard of care. No warranty is expressed or implied. CGTL should be contacted if conditions encountered are not consistent with those described.

APPENDIX www.CrockettGTL.com

PROJECT NO.: G13043

BORING LOCATION PLAN

MORES LAKE DAM GLOBAL STABILITY ANALYSES COLUMBIA, MISSOURI Prepared By:

500 Big Bear Blvd. Columbia, MO 65202 573-447-3981 www.CrockettGTL.com

BORING NUMBER B-1

PAGE 1 OF 1

Telephone: 573-447-3981 **CLIENT** City of Columbia PROJECT NAME Power Plant Dam Stability Analyses PROJECT NUMBER G13043 PROJECT LOCATION Columbia, Missouri DATE STARTED 1/2/14 COMPLETED 1/2/14 **GROUND ELEVATION** 772 ft **HOLE SIZE** 6" **DRILLING CONTRACTOR** IPES **GROUND WATER LEVELS:** SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C.\SERVER FILES\GEOTECH GENERAL\===PROJECTS==\GEOT PROJECTS\GEOT $\sqrt{}$ AT TIME OF DRILLING 16.00 ft / Elev 756.00 ft **DRILLING METHOD** 6" HSA LOGGED BY Lidholm CHECKED BY Lidholm AT END OF DRILLING ---NOTES Piezometer installed upon completion of drilling **24hrs AFTER DRILLING** 11.50 ft / Elev 760.50 ft **ATTERBERG** MOISTURE CONTENT (%) LIMITS SAMPLE TYPE POCKET PEN (psf) UNC. COMP. (psf) DRY UNIT WT RECOVERY LENGTH BLOW COUNTS (N VALUE) GRAPHIC NUMBER PLASTICITY INDEX MATERIAL DESCRIPTION DEPTH PLASTIC LIMIT (bct) LIQUID € TOPSOIL (<1") 771.9 FILL: Fat Clay, brown, trace gray, trace sand, hard 9000 14 120 15 3.0 769.0 FILL: Lean to Fat Clay, brown, very stiff SH 19 7000 118 10 5.0 767.0 2 FILL: Lean Clay, silty, dark brownish gray, stiff SH 4000 97 14 20 26 36 22 3 SH 4970 15 3000 104 20 10 4 FILL: Fat Clay, brown, trace gray, trace sand, soft to stiff SH 12 3500 1540 95 29 ∇ SH 17 1500 1540 97 26 50 16 34 Torvane = 350 psf 20 SH 1000 97 11 29 Torvane = 500 psf 1000 890 7 top 12 86 24 --: more sand, dark gray, soft SH Torvane = 500 psf 7 bot Torvane = 200 psf 746.0 SH 26.08500 95 30 8 top 12 LEAN TO FAT CLAY: brown, trace gray, trace sand and SH fine gravel, very stiff to hard (Glacial Drift) 8 bot SH 9000 120 15 10 15 33 18 739 5 COBBLES AND BOULDERS: Dense to very dense (Glacial Drift) 736.5 LEAN TO FAT CLAY: Dark gray, with gravel, trace sand, SPT 30-26-32 7000 14 14 occasional cobbles and boulders, very stiff to hard (Glacial 10 (58)Drift) SPT 27-39-12 5000 17 50/3" 11 SPT 8-17-38 12 24 (55)CLAYEY SAND: Silty, gray, variable grain size (silt to coarse sand), dense (Glacial Drift) SPT 11-12-28 18 18 13 (40)SPT 6-14-31 21 14 (45)9-12-30 SPT 6 22 (42)Bottom of borehole at 60.0 feet.

Crockett Geotechnical - Testing Lab 500 Big Bear Boulevard Columbia, MO 65202 Telephone: 573-447-3981

BORING NUMBER B-2

PAGE 1 OF 1

CLIENT City of Columbia PROJECT NAME Power Plant Dam Stability Analyses PROJECT NUMBER G13043 PROJECT LOCATION Columbia, Missouri DATE STARTED 1/10/14 **COMPLETED** 1/10/14 **GROUND ELEVATION** 758 ft HOLE SIZE 6" **DRILLING CONTRACTOR** IPES **GROUND WATER LEVELS:** SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C./SERVER FILES/GEOTECH GENERAL/===PROJECTS==/GEOT PROJECTS/2013/G13043 - MORES LAKE DAM STABILITY ANALYSES/G13043. GPJ **DRILLING METHOD** 6" HSA \checkmark AT TIME OF DRILLING 9.00 ft / Elev 749.00 ft AT END OF DRILLING _---LOGGED BY Lidholm CHECKED BY Lidholm AFTER DRILLING _---NOTES Piezometer installed upon completion of drilling ATTERBERG SAMPLE TYPE NUMBER DRY UNIT WT. (pcf) MOISTURE CONTENT (%) LIMITS POCKET PEN. (psf) UNC. COMP. (psf) RECOVERY LENGTH GRAPHIC LOG BLOW COUNTS (N VALUE) PLASTICITY INDEX MATERIAL DESCRIPTION DEPTH PLASTIC LIMIT € LIQUID FILL: Gravel, parking lot surface, 1-inch minus crushed 757.0 SH limestone aggregate 4500 16 755.0 3.0 FILL: Fat Clay, brown, trace gray, trace sand, very stiff SH 5 3150 105 3000 20 FILL: Lean to Fat Clay, brown, stiff 750.0 ☐ LEAN TO FAT CLAY: brown, trace gray, trace sand and SH 3000 2330 109 18 19 fine gravel, medium to very stiff (Glacial Drift) SH 22 8000 1630 110 19 741.0 COBBLES AND BOULDERS: Dense to very dense 739.5 (Glacial Drift) SPT 13-21-31 9000 14 LEAN TO FAT CLAY: Dark gray, with gravel, trace sand, (52)occasional cobbles and boulders, stiff to hard (Glacial SPT 11-20-35 3000 16 6 (55)731 0 CLAYEY SAND: Silty, gray, variable grain size (silt to coarse sand), very dense (Glacial Drift) 14-26-49 4500 24 (75)Bottom of borehole at 30.0 feet.

BORING NUMBER B-3

PAGE 1 OF 1

Telephone: 573-447-3981 **CLIENT** City of Columbia PROJECT NAME Power Plant Dam Stability Analyses PROJECT NUMBER G13043 PROJECT LOCATION Columbia, Missouri DATE STARTED 1/3/14 COMPLETED 1/3/14 **GROUND ELEVATION** 771 ft HOLE SIZE 6" **DRILLING CONTRACTOR** IPES **GROUND WATER LEVELS:** SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C./SERVER FILES/GEOTECH GENERAL/===PROJECTS==/GEOT PROJECTS/2013/G13043 - MORES LAKE DAM STABILITY ANALYSES/G13043. GPJ $\sqrt{}$ AT TIME OF DRILLING 19.00 ft / Elev 752.00 ft **DRILLING METHOD** 6" HSA AT END OF DRILLING _---LOGGED BY Lidholm CHECKED BY Lidholm NOTES Piezometer installed upon completion of drilling AFTER DRILLING _---**ATTERBERG** DRY UNIT WT. (pcf) MOISTURE CONTENT (%) LIMITS SAMPLE TYPE NUMBER POCKET PEN. (psf) UNC. COMP. (psf) RECOVERY LENGTH GRAPHIC LOG BLOW COUNTS (N VALUE) PLASTICITY INDEX MATERIAL DESCRIPTION DEPTH PLASTIC LIMIT € LIQUID 770.9 TOPSOIL (<1") SH FILL: Fat Clay, brown, trace gray, trace sand, medium to 9000 108 12 19 768.0 3.0 SH 1610 11 4000 98 25 FILL: Lean to Fat Clay, brown, soft to very stiff SH 1830 103 12 3000 22 10 SH 13 2000 2670 101 26 51 15 36 758.0 13.0 FILL: Lean Clay, silty, dark brownish gray, stiff 18 1500 1620 98 25 ∇ SH 24 5000 97 26 38 15 23 SH 24 1000 1280 101 21 30 SH 24 0 1730 89 33 LEAN TO FAT CLAY: brown, trace gray, trace sand and fine gravel, very stiff to hard (Glacial Drift) SH 5000 27 19 104 24 44 17 9 SH 22 26 --: sandy zone COBBLES AND BOULDERS: Dense to very dense (Glacial Drift) 726.0 LEAN TO FAT CLAY: Brown and dark gray, with gravel, 13-20-26 SPT 8 21 trace sand, occasional cobbles and boulders, very stiff to 11 (46)hard (Glacial Drift) 50-50/1" 4000 SPT 6 Refusal at 50.7 feet. 12 Bottom of borehole at 50.7 feet.

BORING NUMBER B-4

PAGE 1 OF 1

Telephone: 573-447-3981 **CLIENT** City of Columbia PROJECT NAME Power Plant Dam Stability Analyses PROJECT NUMBER G13043 PROJECT LOCATION Columbia, Missouri DATE STARTED 1/9/14 COMPLETED 1/9/14 **GROUND ELEVATION** 752 ft HOLE SIZE 6" **DRILLING CONTRACTOR** IPES **GROUND WATER LEVELS:** SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C.\SERVER FILES\GEOTECH GENERAL\===PROJECTS==\GEOT PROJECTS==\GEOT PROJECTS\G13043 - MORES LAKE DAM STABILITY ANALYSES\G13043. GPJ **DRILLING METHOD** 6" HSA AT TIME OF DRILLING --- Not Encounteed AT END OF DRILLING _--- Not Encounteed LOGGED BY Lidholm CHECKED BY Lidholm NOTES Piezometer installed upon completion of drilling 2hrs AFTER DRILLING _--- Not Encountered **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS DRY UNIT WT. (pcf) POCKET PEN. (psf) UNC. COMP. (psf) RECOVERY LENGTH GRAPHIC LOG BLOW COUNTS (N VALUE) PLASTICITY INDEX MATERIAL DESCRIPTION DEPTH PLASTIC LIMIT € LIQUID FILL: Gravel, parking lot surface, 1-inch minus crushed 750.5 limestone aggregate SH 17 3000 2300 98 26 FILL: Fat Clay, brown, trace gray, trace sand, stiff 4.5 747.5 FILL: Lean to Fat Clay, brown, trace gray, stiff SH 4000 3930 107 21 21 2 744.0 FILL: Cinders, black, loose SPT 5 2-1-1 44 10 (2) 1-2-3 SPT 41 12.5 739.5 (5) FILL: Lean to Fat Clay, brown, trace gray, trace sand, very SPT 1-1-1 soft to medium 16 0 28 5 (2) Torvane = 100 psf SPT 1-3-4 2000 26 17.0 6 (7) LEAN TO FAT CLAY: brown, trace gray, trace sand and fine gravel, very stiff to hard (Glacial Drift) SPT 16-26-28 15 5000 19 (54)SPT 5-8-10 9000 25 8 (18)724.0 LEAN TO FAT CLAY: Dark gray, with gravel, trace sand, 5-14-17 SPT 6 5500 20 occasional cobbles and boulders, very stiff to hard (Glacial (31)Drift) Bottom of borehole at 30.0 feet.

BORING NUMBER B-5 PAGE 1 OF 1

	Telep	hone:	573-447-3981												
- [,	CLIENT City of Columbia Pr						PROJECT NAME Power Plant Dam Stability Analyses								
	PROJ	ECT N	JMBER <u>G13043</u>	PR	PROJECT LOCATION Columbia, Missouri										
	DATE STARTED _1/8/14 COMPLETED _1/8/14 C														
E I	DRILL	ING C	ONTRACTOR IPES	GF											
043.0	DRILLING METHOD 6" HSA					AT TIME OF DRIVING									
\G13	LOGG	ED BY	Lidholm CHECKED BY	Lidholm				ING							
YSES	NOTE	S Pie	zometer installed upon completion of drilling		AF	TER DRII	LLING								
NAL						111								ERBE	
SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C.\SERVER FILES\GEOTECH GENERAL\===PROJECTS==\GEOT PROJECTS==\GEOT PROJECTS\GEOTECH GENERAL\== PROJECTS\GEOTECH GENERAL\==	DEPTH (ff)	GRAPHIC LOG	MATERIAL DESCR	IPTION		SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC WILIMIT	PLASTICITY INDEX
- KE	0	XXXX	0.1 \ TOPSOIL (<1")		770.9										п.
RES	_		3.0 FILL: Fat Clay and Cinders, brown	, trace gray, trace sand,	768.0	SH	19		7000			13			
- W	_		very stiff FILL: Fat Clay, brown, trace gray,	/	700.0	1									
13043	_		stiff			SH	99		1500	1370	97	26	47	16	31
13/G				Torvane = 500 psf		2	99		1300	1370	31	20	71	10	31
TS/20	10		10.0		761.0	SH 3	9		3000		98	24			
SPEC			FILL: Lean to Fat Clay, brown, tra- soft	ce gray, trace sand, very		SH	24		0	340	94	28	36	15	21
T PR	-		SOIL	Torvane = 300 psf		4									
GEO	-					011									
\mathbb{H}	-			Torvane = 200 psf		SH 5	24		0			31			
FCT	-		19.0	·	752.0										
8 8	20		LEAN TO FAT CLAY: brown, trace fine gravel, stiff to very stiff (Glacia			SH									
#	-		fille graver, still to very still (Glack	al Dilit)		6	24		5500	2490	113	13	40	14	26
ERA F	_														
	_					X SPT	12	3-8-11	5500			19			
ᇍ	_					7	12	(19)	3300			19			
GEO	30		29.0 LEAN TO FAT CLAY: Brown and	grav to dark grav, with	742.0										
SILES			gravel, trace sand, occasional cob stiff to hard (Glacial Drift)	bles and boulders, very		SH 8	21		7500	4640	119	16			
VER	_		Still to Hard (Gladial Dilit)												
SER	_														
- - - -	-		: sandy zone			SPT 9	14	20-46-37 (83)	9000			17			
15:3	-							(33)							
/25/1/	40_							11-27-27							
7 - -7	-		40.5		707.5	10	15	(54)	9000			18			
티	-	19/14/	43.5 COBBLES AND BOULDERS: Der	nse to very dense	727.5										
IPLA I	_	\mathbf{x}	(Glacial Drift)			SPT	5	13-26-31	5500			19			
		. •	47.7 Refusal at 47.7	' feet	723.3	11_ SPT	2 /	(57) 50/3"				8 /			
Ŏ -			Bottom of borehole a			12									
-FAT															
ORT															
핆															
MGTF															
4MPL															
ώL															

BORING NUMBER B-6
PAGE 1 OF 1

Telephone: 573-447-3981	ECHNICAL - TESTING LAB								
CLIENT City of Columbia	PROJECT NAME Power Plant Dam Stability Analyses								
PROJECT NUMBER G13043	PROJECT LOCATION Columbia, Missouri								
DATE STARTED 1/9/14 COMPLETED 1/9/14	GROUND ELEVATION 755 ft HOLE SIZE 6"								
DRILLING CONTRACTOR IPES									
DRILLING METHOD 6" HSA	47 THE 05 DDI 1 NO								
LOGGED BY Lidholm CHECKED BY Lidholm	AT END OF DRILLING								
NOTES Piezometer installed upon completion of drilling	AFTER DRILLING								
	ATTERBERG								
MATERIAL DESCRIPTION (BL) (CO) (C									
MATERIAL DESCRIPTION LE LE LOG BANGER PAR PAR PAR PAR PAR PAR PAR PAR PAR PA	AMPLE NUMB LENG COUN (N VAL) (PSf (PSf (PSf (PSf (PSf (PSf (PSf (PSf								
G	SAMPLE TY NUMBER RECOVER LENGTH BLOW COUNTS (N VALUE (psf) UNC. COMI (psf) UNC. COMI (psf) DRY UNIT W (psf) MOISTURI CONTENT LIQUID LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT								
FILL: Gravel, parking lot surface, 1-inch minus crushe limestone aggregate	755.5								
FILL: Fat Clay, brown, trace gray, trace sand, hard	751.0 SH 12 3000 105 19								
LEAN TO FAT CLAY: Brown, trace gray, trace sand ar fine gravel, occasional cobbles and possible boulders,	nd SH 25 3500 1650 111 22								
stiff to hard (Glacial Drift)									
10	SH 11 4000 119 15								
	SPT 10 20-50/5" 1000 18								
	SPT 8 31-50/5" 9000 10 10								
	SPT 6 33-50/5" 9000 12								
	6								
	SPT 18 8-15-27 9000 17								
28.0	727.0								
LEAN TO FAT CLAY: Dark gray, with gravel, trace sar occasional cobbles and boulders, very stiff to hard (Gla	nd, acial 725.0 SPT 16 10-13-20 8500 19								
Drift)									
Bottom of borehole at 30.0 feet.									
ć t									
\$									

Crockett Geotechnical - Testing Lab 500 Big Bear Boulevard Columbia, MO 65202 Telephone: 573-447-3981

BORING NUMBER B-7

CLIENT City of Columbia	PROJECT NAME Power Plant Dam Stability Analyses
PROJECT NUMBER G13043	PROJECT LOCATION Columbia, Missouri
DATE STARTED 6/30/14 COMPLETED 6/30/14	GROUND ELEVATION 755 ft HOLE SIZE 6"
DRILLING CONTRACTOR IPES	GROUND WATER LEVELS:
DRILLING METHOD 6" HSA	$\overline{\mathcal{Y}}$ AT TIME OF DRILLING $\underline{7.00}$ ft / Elev 748.00 ft
LOGGED BY Rathe CHECKED BY Lidholm	AT END OF DRILLING
NOTES	Thrs AFTER DRILLING _7.00 ft / Elev 748.00 ft
	ATTERBERG

_ L													
Y AINA				PE	>	(PEN.	٩.	WT.	E %)		ERBE	_
ADIL	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	LE TY	OVER JGTH	BLOW COUNTS (N VALUE)	KET PE (psf)	COM (Jsc)	UNIT V (pcf)	STUR ENT (∟⊇		ΣIΤΥ X
D AIM O		GR/ L		SAMPLE TYF NUMBER	RECOVERY LENGTH	BL COI (N V,	OCKET (psf)	UNC. COMP. (psf)	DRY U	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX
	0			S			п.			0		ш	Ы
ES L		××××		54.0									
2			FILL: Gravel and cobbles, 1-inch minus crushed limestone 3.5 aggregate 75	SPT 51.5 1	8	22-18-4 (22)	9000			8			
3043 -			FILL: Lean to Fat Clay, brown, trace root hairs, trace gravel and fine gravel, stiff	SPT 2	5	3-2-5 (7)	3000			14			
5/2013/61	_		Ā										
13/21	10			SPT 3	1	4-2-1 (3)	9000			16			
202					1	(5)							
			: black and brown, trace sand, medium	SPT	13	3-5-3	1500			25	38	15	23
ا ا	-		17.0	38.0		(8)							
2			LEAN TO FAT CLAY: Dark gray and orangish brown, trace fine gravel, trace to with gravel, very stiff (Glacial Drift)	1 007		0.00							
PROJE PROJE	20		into gravos, trace to with graves, very start (Gladiai Eritt)	SPT 5	14	3-6-6 (12)	5000			26			
2			25.0: light brown, trace fine sand, hard	30.0 SPT	15	8-16-18	9000			20			
5			Bottom of borehole at 25.0 feet.	\ <u></u> 6	J	(34)	1						

SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C.\SERVER FILES\GEOTECH GENERAL\===PROJECTS===\GEOT PROJECTS\2013\G13043 - MORES LAKE DAM STABILITY ANALYSES\G13043.GPJ

Telephone: 573-447-3981 **CLIENT** City of Columbia PROJECT NAME Power Plant Dam Stability Analyses PROJECT NUMBER G13043 PROJECT LOCATION Columbia, Missouri DATE STARTED 6/30/14 COMPLETED 6/30/14 GROUND ELEVATION 751 ft HOLE SIZE 6" DRILLING CONTRACTOR IPES **GROUND WATER LEVELS:** SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C.\SERVER FILES\GEOTECH GENERAL\===PROJECTS==\GEOT PROJECTS==\GEOT PROJECTS\G13043 - MORES LAKE DAM STABILITY ANALYSES\G13043. GPJ $\sqrt{}$ AT TIME OF DRILLING 5.00 ft / Elev 746.00 ft **DRILLING METHOD** 6" HSA AT END OF DRILLING _---LOGGED BY Rathe CHECKED BY Lidholm NOTES AFTER DRILLING _---ATTERBERG SAMPLE TYPE NUMBER DRY UNIT WT. (pcf) MOISTURE CONTENT (%) LIMITS POCKET PEN. (psf) UNC. COMP. (psf) RECOVERY LENGTH GRAPHIC LOG BLOW COUNTS (N VALUE) PLASTICITY INDEX DEPTH MATERIAL DESCRIPTION PLASTIC LIMIT € LIQUID FILL: Gravel, parking lot surface, 1-inch minus crushed 750.0 limestone aggregate 7-3-3 4000 24 FILL: Cinders, black, loose (6) 2-1-2 4.0 747.0 10 500 12 ∇ Fill: Dark gray, trace light brown, trace fine gravel, trace (3) gravel, soft to medium SPT 13 1-3-7 1000 29 42 15 27 3 (10)SPT 2-2-3 18 1000 27 4 (5) SPT 7-12-13 500 35 5 (25)

5-11-14

18

726.0

9000

30

--: with white, trace rust stains, hard Bottom of borehole at 25.0 feet.

Crockett Geotechnical - Testing Lab 500 Big Bear Boulevard Columbia, MO 65202 Telephone: 573-447-3981

BORING NUMBER B-9 PAGE 1 OF 1

	CLIENT _City of Columbia					PROJECT NAME _Power Plant Dam Stability Analyses													
- 1			-	G13043					PROJECT LOCATION Columbia, Missouri										
- 1	DATE STARTED _6/30/14 COMPLETED _6/30/14									GROUND ELEVATION 753 ft HOLE SIZE 6"									
P.	DRILL	ING C	ONTRA	CTOR IPE	GROUND	WATER	LEVE	LS:											
043.G	DRILLING METHOD 6" HSA LOGGED BY Rathe CHECKED BY Lidholm																		
3/G13							AT	END OF	DRILL	.ING									
YSE	NOTES			AFTER DRILLING Borehole backfilled upon completion															
ANA										ш			_i		Ŀ		ATT	TERBE LIMITS	
AKE DAM STABILITY	O DEPTH (ft)	GRAPHIC LOG					SCRIPTION			SAMPLE TYPE NUMBER	RECOVERY LENGTH	BLOW COUNTS (N VALUE)	POCKET PEN. (psf)	UNC. COMP. (psf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID		PLASTICITY INDEX
ZES L	_		1.0	FILL: Grave limestone a			ce, 1-inch m	ninus crushed	752.0	ST	14		3000	1190	107	19			
\G13043 - MOF	- -		Ţ	LEAN TO F reddish ora Drift)	FAT CL	AY: Light br	rown, trace g ace gravel, s	gray, trace stiff (Glacial		ST 2	11		2500	1130	101	24	-		
ROJECTS/2013	10			: dark gra	ay, trace	light brown	, trace root l	hairs, very stiff		ST 3	18		5000			26	-		
TS===\GEOT P	_			: gray and	d orangi	sh brown, tr	race fine sar	nd		ST 4	22		5500		105	22			
SUEC	_		19.6	: with gra	ivel, red	dish brown			733.4	SPT 5	9	20-46- 50/1"	9000			12			
SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C.\SERVER FILES\GEOTECH GENERAL\===PROJECTS===\GEOT PROJECTS\=2013\033313\0333313\033333\03313\03333\033313\0333\					Botto	om of boreh	ole at 19.6 f	eet.											

BORING NUMBER B-10

PAGE 1 OF 1

Telephone: 573-447-3981 **CLIENT** City of Columbia PROJECT NAME Power Plant Dam Stability Analyses PROJECT NUMBER G13043 PROJECT LOCATION Columbia, Missouri DATE STARTED 6/30/14 COMPLETED 6/30/14 **GROUND ELEVATION** 752 ft **HOLE SIZE** 6" **DRILLING CONTRACTOR** IPES **GROUND WATER LEVELS:** $\sqrt{}$ AT TIME OF DRILLING <u>3.50 ft / Elev 748.50 ft</u> **DRILLING METHOD** 6" HSA AT END OF DRILLING _---LOGGED BY Rathe CHECKED BY Lidholm **▼ 0.25hrs AFTER DRILLING** 3.50 ft / Elev 748.50 ft NOTES ATTERBERG SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS DRY UNIT WT. (pcf) POCKET PEN. (psf) UNC. COMP. (psf) RECOVERY LENGTH GRAPHIC LOG BLOW COUNTS (N VALUE) DEPTH PLASTICITY INDEX MATERIAL DESCRIPTION PLASTIC LIMIT € LIQUID FILL: Gravel, parking lot surface, 1-inch minus crushed 751.0 limestone aggregate, with cinders 3000 17 21 LEAN TO FAT CLAY: Dark gray, trace light brown, trace ST 3500 19 fine gravel, stiff (Glacial Drift) 11 --: trace root hairs, with gravel SPT 8 4-5-2 24 3 (7) --: with gravel and cobbles from 11.0' - to 13.0' SPT 1-1-2 18 34 4 (3) 6-12-15 SPT --: becomes brown, with gravel and sand 3000 22

(27)

7-9-11

5

8500

17

Bottom of borehole at 25.0 feet.

SAMPLE LENGTH REPORT - LAT-LONG TEMPLATE.GDT - 7/25/14 15:34 - C./SERVER FILES/GEOTECH GENERAL/===PROJECTS==/GEOT PROJECTS/2013/G13043 - MORES LAKE DAM STABILITY ANALYSES/G13043. GPJ

BORING LOG LEGEND AND NOMENCLATURE

Sample Type

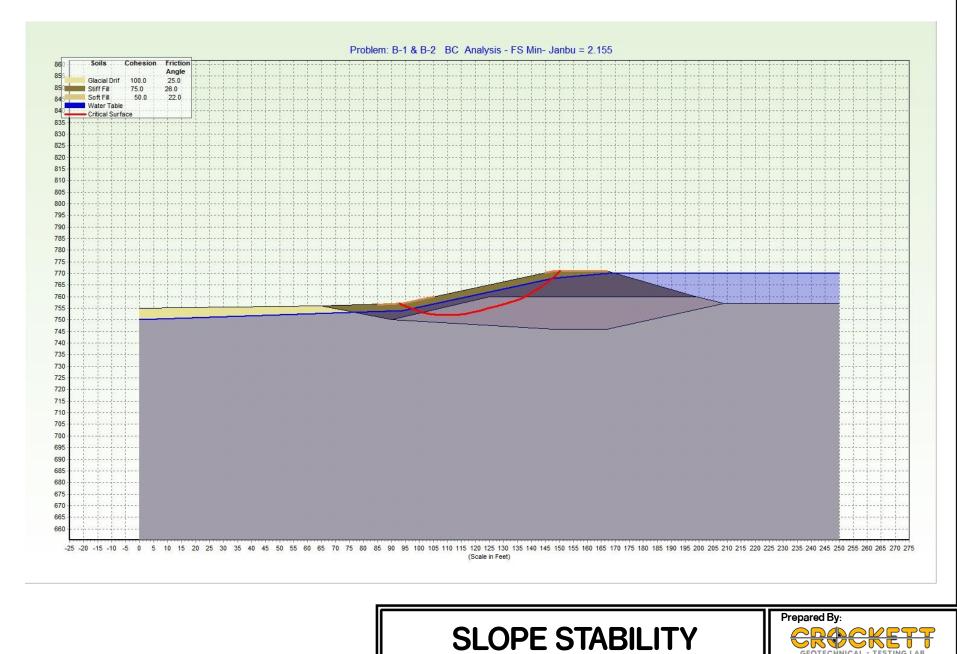
AU Auger Sample, disturbed, obtained from auger cuttings

NR No recovery or lost sample

RC Rock core, diamond core bit, nominal 2-inch diameter rock sample (ASTM D 2113)

ST Thin walled (Shelby) tube sample, relatively undisturbed (ASTM D 1587)

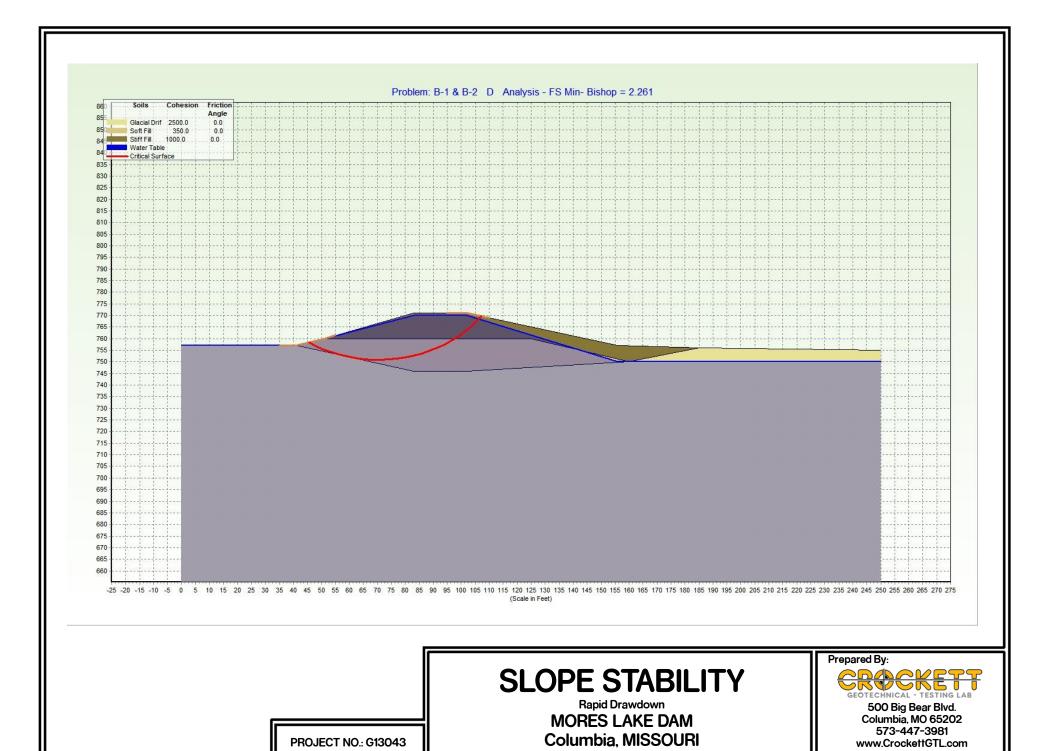

SPT Split-spoon sample, disturbed (ASTM D 1586)

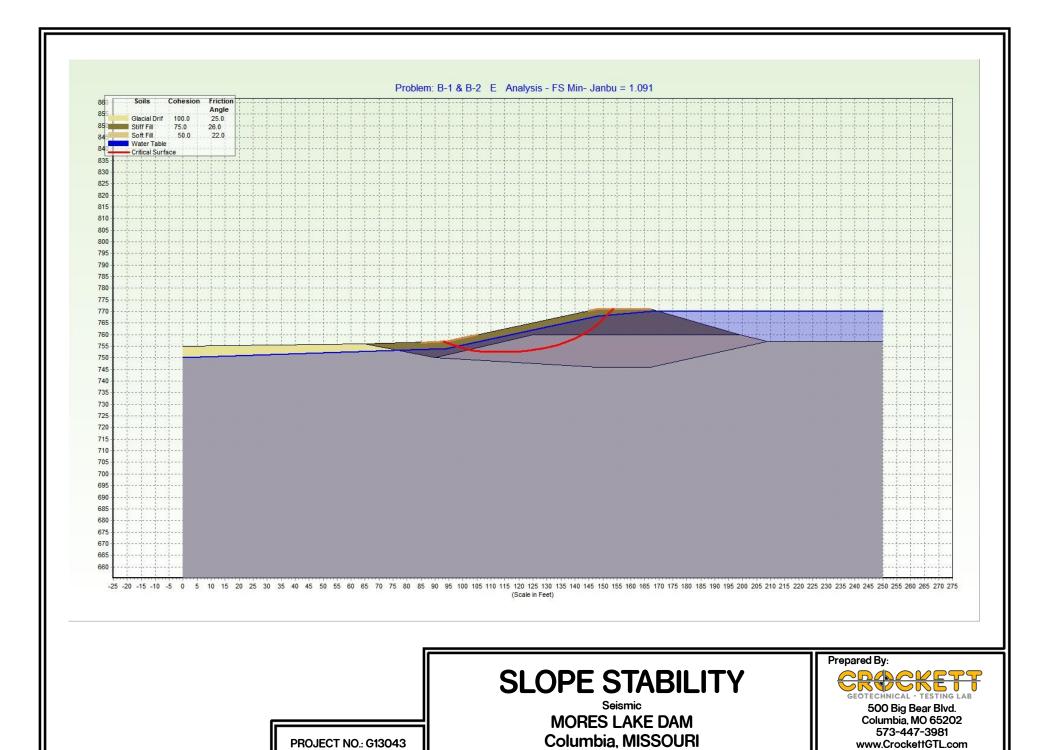

VA Shear vane (ASTM D 2753)

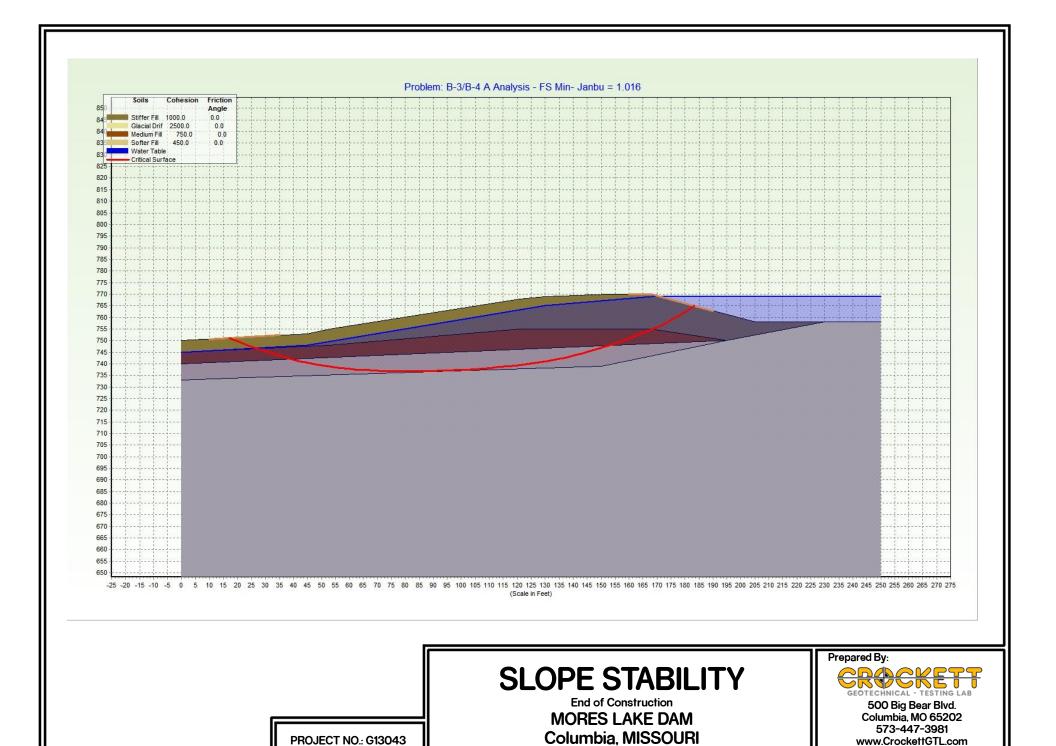
	Grain Size Terminology	Relative Proportions of Sand and Gravel				
Boulders Cobbles Gravel Sand Silt or Clay	Larger than 12-inches 3-inches to 12-inches retained on #4 sieve to 3-inches retained on #200 sieve but passes #4 sieve passes #200 sieve	Trace With Modifier	Less than 15 %, by dry weight More than 15% but less than 30%, by dry weight More than 30%, by dry weight			

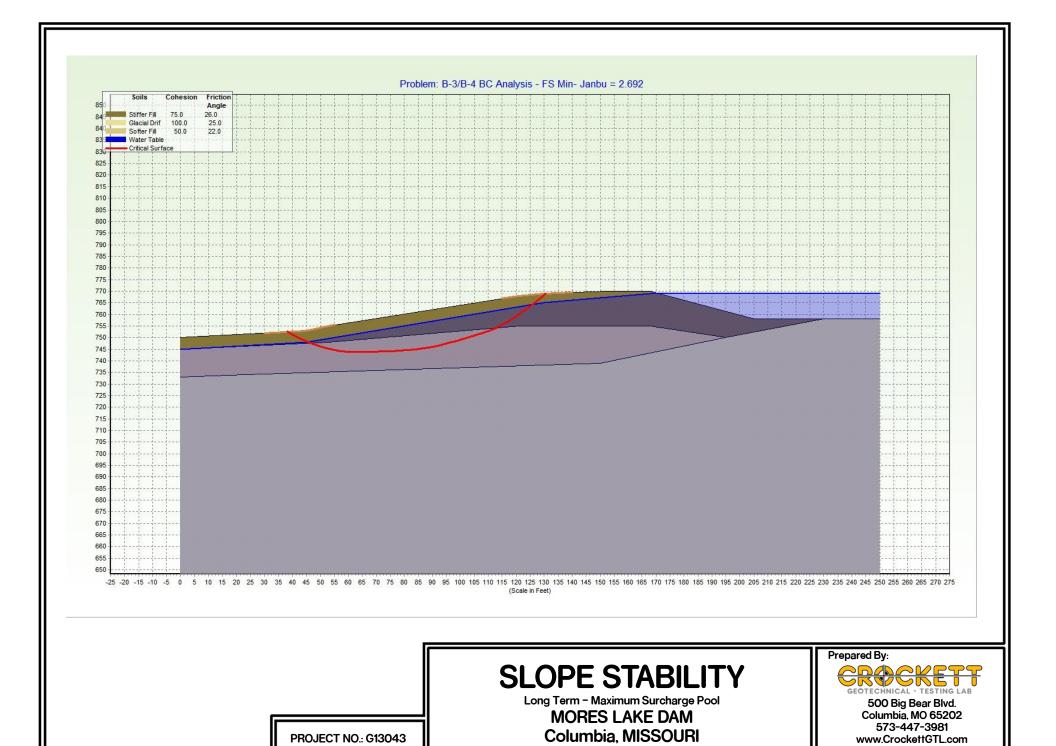
Relative Density o	f Fine Grained Soil	Consistency of Fine Grained Soil						
Descriptive Term	SPT N-Value Blows/Foot	Descriptive Term	SPT N-Value Blows/Foot	Unconfined Compressive Strength, psf				
Very Loose	0-4	Very Soft	0-2	0 - 500				
Loose	4 - 10	Soft	2 - 4	500 - 1,000				
Medium Dense	10 - 30	Medium	4-8	1,000 - 2,000				
Dense	30 - 50	Stiff	8 - 15	2,000 - 4,000				
Very Dense	50+	Very Stiff	15 - 30	4,000 - 8,000				
		Hard	30+	8,000+				

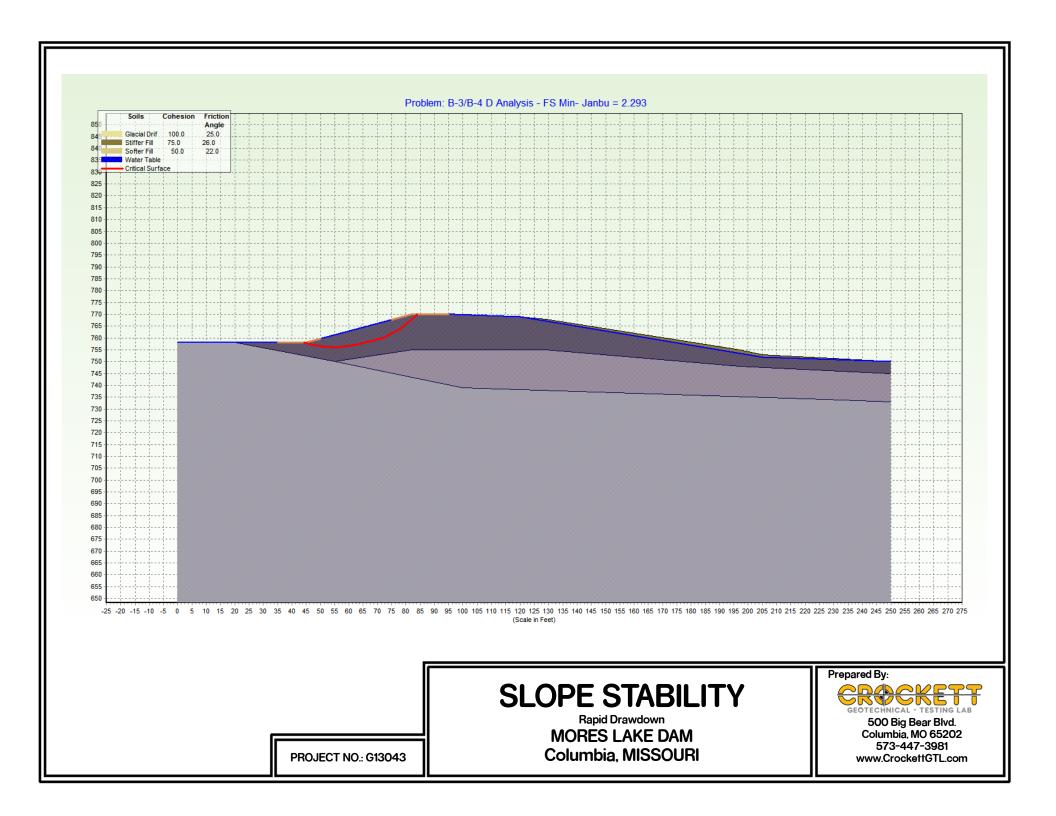
USCS SOIL CLASSIFICATION SYSTEM					
Major divisions			Group Symbol		Group Name
Coarse grained soils more than 50% retained on #200 sieve	gravel > 50% of coarse fraction retained on No. 4 (4.75 mm) sieve	clean gravel <5% smaller than #200 Sieve	GW		well-graded gravel, fine to coarse gravel
			GP	00.00	poorly graded gravel
		gravel with >12% fines	GM	0000	silty gravel
			GC		clayey gravel
	sand ≥ 50% of coarse fraction passes No.4 sieve	clean sand	SW		well-graded sand, fine to coarse sand
			SP		poorly graded sand
		sand with >12% fines	SM		silty sand
			SC		clayey sand
Fine grained soils more than 50% passes #200 sieve	silt and clay liquid limit < 50	inorganic	ML		silt
			CL		clay
		organic	OL		organic silt, organic clay
	silt and clay liquid limit ≥ 50	inorganic -	MH		silt of high plasticity, elastic silt
			CH		clay of high plasticity, fat clay
		organic	ОН		organic clay, organic silt
Highly organic soils			PT	\$0 \$0 \$0 \$0 \$ \$0 \$0 \$0 \$ \$0 \$0 \$0	peat

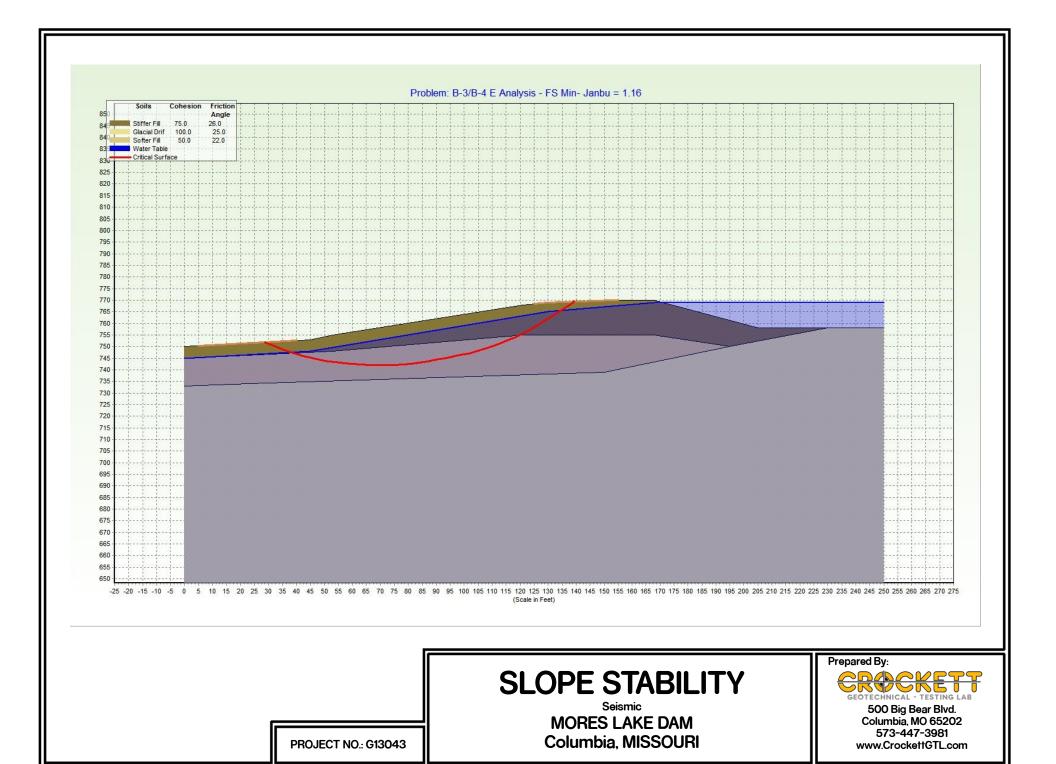


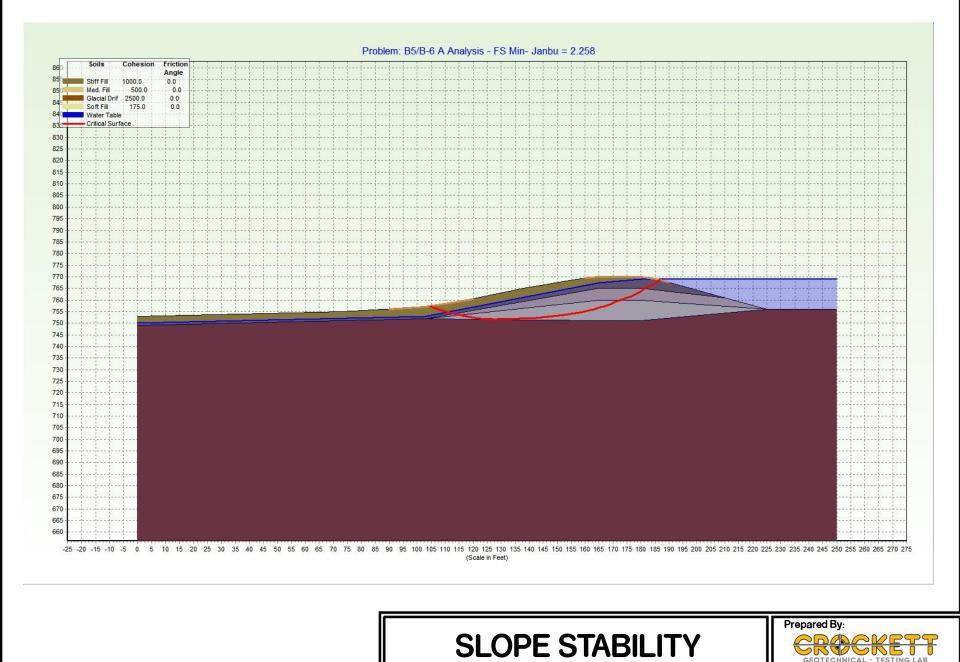


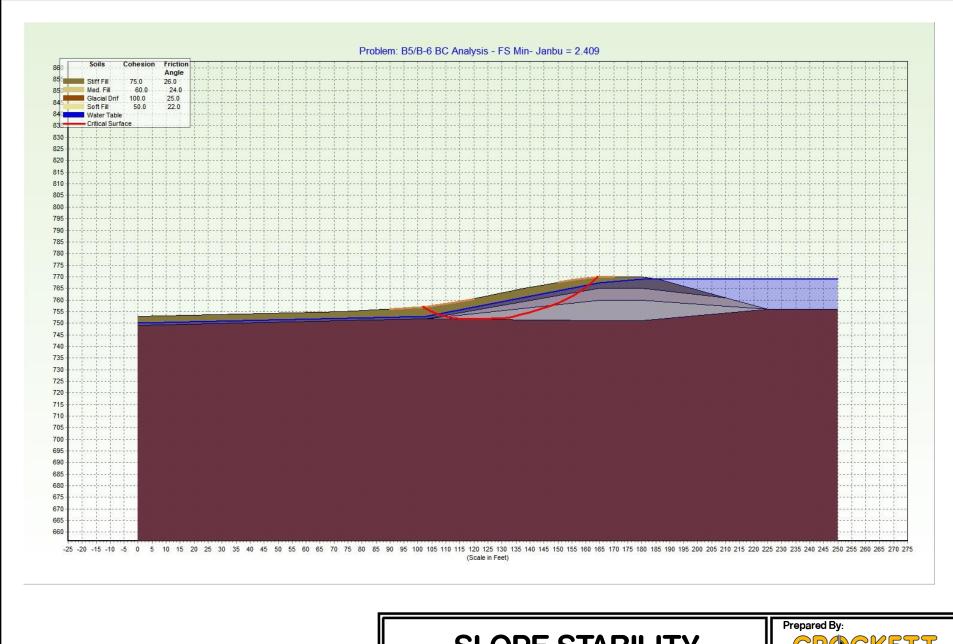

Long Term - Maximum Surcharge Pool MORES LAKE DAM Columbia, MISSOURI


500 Big Bear Blvd. Columbia, MO 65202 573-447-3981 www.CrockettGTL.com


PROJECT NO.: G13043







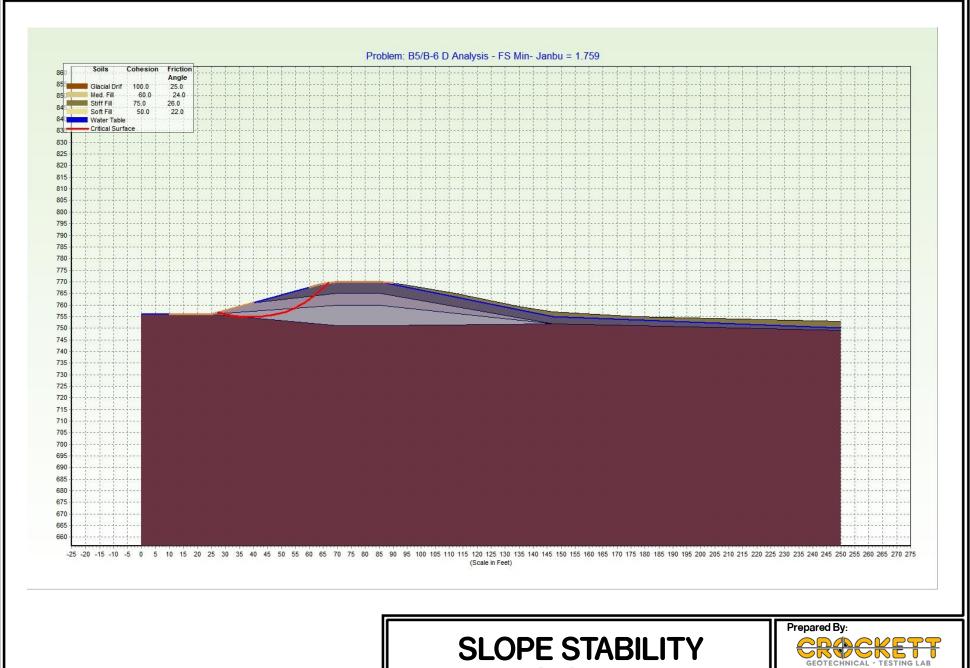
PROJECT NO.: G13043

End of Construction
MORES LAKE DAM
Columbia, MISSOURI

500 Big Bear Blvd. Columbia, MO 65202 573-447-3981

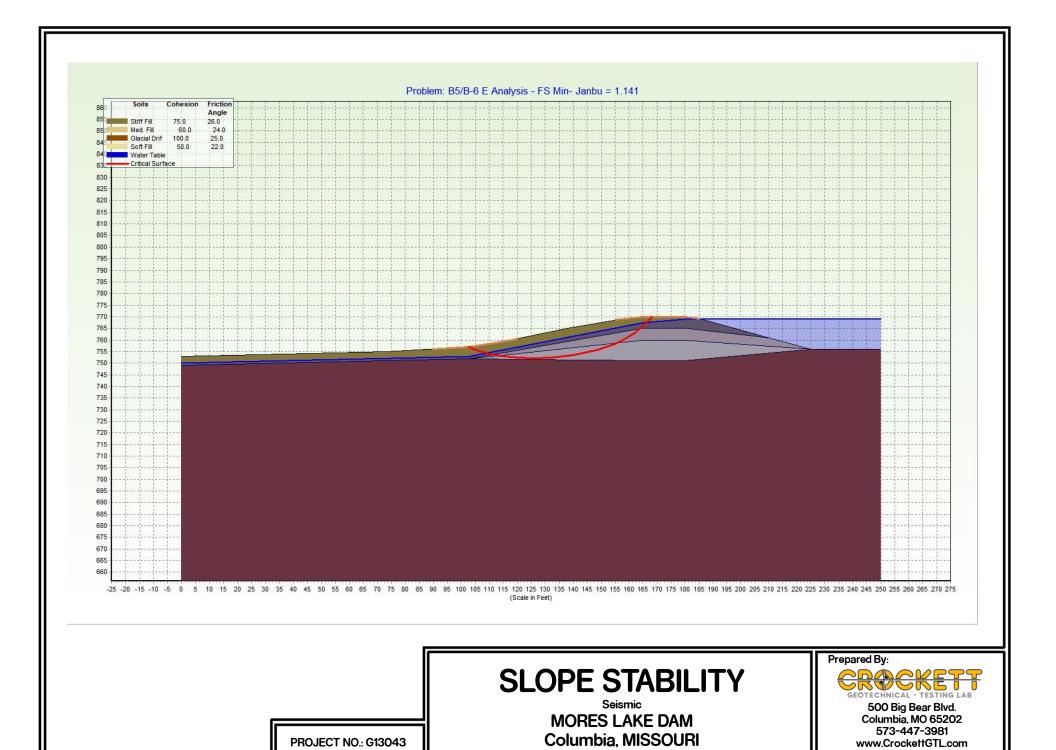
www.CrockettGTL.com

SLOPE STABILITY


Long Term - Maximum Surcharge Pool MORES LAKE DAM Columbia, MISSOURI

500 Big Bear Blvd. Columbia, MO 65202 573-447-3981

573-447-3981 www.CrockettGTL.com


PROJECT NO.: G13043

Rapid Drawdown
MORES LAKE DAM
Columbia, MISSOURI

500 Big Bear Blvd. Columbia, MO 65202 573-447-3981 www.CrockettGTL.com

PROJECT NO.: G13043

